
Constrained Graphic Layout Generation via Latent Optimization
Kotaro Kikuchi
Waseda University

Shinjuku-ku, Tokyo, Japan
kiku-koh@ruri.waseda.jp

Edgar Simo-Serra
Waseda University

Shinjuku-ku, Tokyo, Japan
ess@waseda.jp

Mayu Otani
CyberAgent

Shibuya-ku, Tokyo, Japan
otani_mayu@cyberagent.co.jp

Kota Yamaguchi
CyberAgent

Shibuya-ku, Tokyo, Japan
yamaguchi_kota@cyberagent.co.jp

Latent space exploration

Pre-trained Layout GAN

Real /

 Fake

Alignment Non-overlap

Beautification constraints

User-specified constraints

Relational constraints

Initial

OptimizedOptimized

Figure 1: Overview of our Constrained Layout Generation via Latent Optimization (CLG-LO) framework. Given a pre-trained
Generative Adversarial Network (GAN) for layout generation and user-specified constraints, CLG-LO explores the latent code
to find a layout that satisfies the constraints. CLG-LO can reuse the same GAN for varying constraints without re-training.

ABSTRACT
It is common in graphic design humans visually arrange various
elements according to their design intent and semantics. For ex-
ample, a title text almost always appears on top of other elements
in a document. In this work, we generate graphic layouts that can
flexibly incorporate such design semantics, either specified implic-
itly or explicitly by a user. We optimize using the latent space of
an off-the-shelf layout generation model, allowing our approach
to be complementary to and used with existing layout generation
models. Our approach builds on a generative layout model based on
a Transformer architecture, and formulates the layout generation
as a constrained optimization problem where design constraints
are used for element alignment, overlap avoidance, or any other
user-specified relationship. We show in the experiments that our ap-
proach is capable of generating realistic layouts in both constrained
and unconstrained generation tasks with a single model. The code
is available at https://github.com/ktrk115/const_layout.

CCS CONCEPTS
• Human-centered computing→ Interaction design process and
methods; • Applied computing→ Computer-aided design.

MM ’21, October 20–24, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the 29th ACM International Conference on Multimedia (MM ’21), October 20–24, 2021,
Virtual Event, China, https://doi.org/10.1145/3474085.3475497.

KEYWORDS
layout generation, generative adversarial network, constrained op-
timization, latent space exploration

ACM Reference Format:
Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani, and Kota Yamaguchi. 2021.
Constrained Graphic Layout Generation via Latent Optimization. In Pro-
ceedings of the 29th ACM International Conference on Multimedia (MM ’21),
October 20–24, 2021, Virtual Event, China. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3474085.3475497

1 INTRODUCTION
Visual media contents are organized using design layouts to facil-
itate the conveying of information. Design layout consists of the
arrangement of the size and position of the elements to be displayed,
and is a critical part of graphic design. In general, articles start with
a text title, followed by headings and the main text, usually in a top
to bottom order. Mobile user interfaces arrange navigation, images,
texts, or buttons cleanly in a given display resolution with fluid
layouts. The semantic relationships, priority, and reading order
of elements is carefully decided by graphic designers while con-
sidering the overall visual aesthetics of the design. Inexperienced
designers often face the difficulty of producing high-quality presen-
tations while conveying the designated message and maintaining
fundamental design considerations such as alignment or overlap.
Design constraints can be internal, derived from the one’s design
experience and preference, or external, such as visual media regula-
tions and client requirements. Automatic search of plausible layout
candidates, such as we propose in this paper, can greatly aid in the
design process.

https://github.com/ktrk115/const_layout
https://doi.org/10.1145/3474085.3475497
https://doi.org/10.1145/3474085.3475497

Several attempts have been made to automatically generate
graphic layouts in the computer graphics community [23, 24]. Re-
cent studies [1, 12, 17] using unconstrained deep generative models
have shown to be able to generate plausible layouts thanks to large
scale datasets of design examples. Some work explicitly introduce
design constraints like alignment or overlap avoidance by addi-
tional losses or conditioning [16, 18]. However, one drawback of
integrating constraints in the learning objective is that a model
must be fit to a new condition or a new loss when there appears a
new constraint a user wishes to incorporate. We instead opt to per-
form the optimization in the latent space of the generative model,
being complementary to and allowing for the usage of existing
off-the-shelf models.

In this work, we propose a novel framework, which we call Con-
strained Layout Generation via Latent Optimization (CLG-LO), that
defines constrained layout generation as a constrained optimiza-
tion problem in the latent space of the model. An overview of the
proposed framework is illustrated in Fig. 1. In our approach, we
use a Generative Adversarial Network (GAN) trained in the un-
constrained setting and model user specifications as a constrained
optimization program. We optimize the latent code of the uncon-
strained model with an iterative algorithm to find a layout that
satisfies the specified constraints. Our framework allows the user
to use a single pre-trained GAN and incorporate various constraints
into the layout generation as needed, eliminating the computation-
ally expensive need of re-training of the model.

Although our approach can work with off-the-shelf generative
layout models, in addition to CLG-LO framework, we also propose a
Transformer [32] based layout GANmodel, which we name Layout-
GAN++. Relationships between elements can be well captured by
Transformers in both the generator and the discriminator. With the
help of representation learning of the discriminator through aux-
iliary layout reconstruction [19], LayoutGAN++ significantly im-
proves the performance of the LayoutGAN [17] for unconstrained
layout generation.

We validate our proposed methods using three public datasets
of graphic layouts. We design two constrained generation settings
similar to real use cases. In the unconstrained generation task,
LayoutGAN++ obtains comparable or better results than the exist-
ing methods. Using LayoutGAN++ as the backend model, CLG-LO
shows significant improvements in the constrained generation task.

We summarize our contributions as follows:
• A framework to generate layouts that satisfies given con-

straints by optimizing latent codes.
• An architecture andmethodology for layout GAN that allows

for stable training and generation of high-quality layouts.
• Extensive experiments and state-of-the-art results using pub-

lic datasets for unconstrained and constrained layout gener-
ation.

2 RELATEDWORK
2.1 Layout Generation
There has been several studies on generating layout, both with or
without user specification. Classic optimization approaches [23, 24]
manually designed energy functions with a large number of con-
straints that a layout should satisfy. Recent works have utilized

neural networks to learn a generative model of layout. LayoutVAE
trained two types of Variational Auto-Encoders (VAE) to generate
bounding boxes to the given label set [12]. LayoutGAN trained rela-
tional generator by employing a wireframe renderer that rasterize
bounding boxes and allows for training with a pixel-based discrim-
inator [17]. Later, LayoutGAN was extended to include attribute
conditioning [18]. Zheng et al. [37] reported a raster layout gen-
erator conditioned on the given images, keywords, and attributes.
READ [27] trained a hierarchical auto-encoder to generate docu-
ment layout structures. Lee et al. [16] proposed graph-based net-
works called Neural Design Networks (NDN) that explicitly infer
element relations from partial user specification. Very recently,
Gupta et al. [8] described a Transformer-based model to gener-
ate layout in various domains. Also, Arroyo et al. [1] reported a
VAE model that generated layouts using self-attention networks.
Apart from graphic design layouts, there has also been research on
generating indoor scene layouts [10, 29, 35].

Our work considers both unconstrained generation [1, 8] and
constrained generation [16, 18]. We build our unconstrained layout
generator based on LayoutGAN [17], and apply user layout specifi-
cation as constraints to a learned generator. Unlike NDN [16], we
only need a single model to generate constrained layouts.

2.2 Latent Space Exploitation
With the recent progress in image synthesis using deep generative
models [13, 14], much of the research utilizing the latent space
have been made in the image domain. In real image editing, the
mainstream research involves projecting the target image into the
latent space and performing non-trivial image editing with user
input on the learned manifold [2, 39, 40]. Pan et al. [25] also used the
natural image priors learned by GAN and applied them to various
image restoration tasks such as inpainting and colorization in a
unified way. Menon et al. [21] search through the latent space of
high-resolution facial photos to achieve super-resolution of low-
quality photos.

The utilization of latent variables in deep generative models have
been less studied in non-image domains. Umetani [31] proposed an
interactive interface that uses a learned auto-encoder to find the
shape of a 3D model by adjusting latent variables. Schrum et al. [30]
proposed an interface consisting of interactive evolutionary search
and direct manipulation of latent variables for the game level design.
Chiu et al. [5] proposed a method to efficiently explore latent space
in a human-in-the-loop fashion using a learned generative model,
and validated it in the tasks of generating images, sounds, and 3D
models.

Our layout generation approach shares the concept of latent
space exploration, and we seek to find a latent representation of
layout such that the resulting layout satisfies user-specified con-
straints.

3 APPROACH
Our goal is to generate a semantically plausible and high-quality
design layout from a set of element labels and constraints speci-
fied by the user. We first train an unconstrained generative model
of layout denoted LayoutGAN++, and later utilize the model for
constrained generation tasks.

Generator

Transformer Blocks

Background

Image

Image Text Text Text

Button

Compose

Transformer Blocks

Real /

Fake

Decompose

Transformer Blocks

1 52 3 4

Copy

Auxiliary DecoderDiscriminator

Reconstruction

Hidden representations

Bounding box

Latent code

Label embedding

Special embedding

Positional embedding

Figure 2: Overview of our proposed LayoutGAN++ model.

3.1 LayoutGAN++
In unconstrained generation, we take a set of elements and as-
sign size and location to each element. We follow LayoutGAN [17]
and formulate our model, which we refer LayoutGAN++, in the
following. Formally, our generator � : (/, !) ↦→ � takes a set of
randomly-generated codes / = {z8 }

#
8=1 and a conditional multiset

of labels ! = {{;8 }}
#
8=1 as input, and outputs a set of bounding boxes

� = {b8 }
#
8=1, where b8 ∈ [0, 1]4 represents the position and size of

the element in normalized coordinates. # is the number of elements
in a layout, and the subscript 8 in / , !, and � refers to the same
8-th element. The definition of a label ; depends on the dataset;
e.g., text or table elements in PubLayNet dataset. Our discriminator
� : (�, !) ↦→ A ∈ [0, 1] takes the generated bounding boxes � and
conditional labels ! as input, and outputs a scalar value which quan-
tifies the realism of layout, as well as attempts at reconstructing the
given bounding boxes from the internal representation. We show
in Fig. 2 the overall architecture of our model.

3.1.1 Generator. Our generator consists of the following:

z8 ∼ N(0, I), (1)
h8 = 5enc (z8 , ;8 ;\), (2)
{h′8 } = Transformer({h8 };\), (3)
b8 = 5dec (h

′
8 ;\), (4)

where 5enc, 5dec are multi-layer perceptrons, h8 and h′8 are hidden
representations for each element, and \ is the parameters for the
generator. We adopt the Transformer block [32] to learn relational
representation among elements, in contrast to LayoutGAN [34]
that utilizes a dot product-based non-local block with a residual
connection.

3.1.2 Discriminator. Our discriminator has a similar architecture
to our generator.

h8 = 5enc (b8 , ;8 ;q), (5)
h′const = Transformer(hconst, {h8 };q), (6)

~ = 5dec (h
′
const;q), (7)

where hconst is a special learnable embedding appended to the hid-
den element representations, h′const is the corresponding output
for the learnable embedding after the Transformer block, ~ is the

quantity to evaluate the reality of the given input, and q is the
parameters of the discriminator. We do not employ the wireframe
renderer of LayoutGAN [34], because we find that the raster do-
main discriminator becomes unstable with limited dataset size. We
compare with LayoutGAN in our experiments.

3.1.3 Auxiliary Decoder. We empirically find that in well-aligned
layout domains such as documents, the discriminator is trained to
be sensitive to alignment and less sensitive to positional trends,
i.e., it only cares if the elements are aligned, and does not care
about unusual layouts such as placing the header element at the
bottom. Following the self-supervised learning of Liu et al. [19],
we apply additional regularization to the discriminator so that the
discriminator becomes aware of the positional trends. We add an
auxiliary decoder to reconstruct the bounding boxes given to the
discriminator from the internal representation h′const:

h8 = 5enc (h
′
const, p8 ; b), (8)

{h′8 } = Transformer({h8 }; b), (9)

b̂8 , ;̂8 = 5dec (h
′
8 ; b), (10)

where p8 is a learnable positional embedding initialized with the
uniform distribution of [0, 1], b̂8 ∈ �̂ is a reconstructed bounding
box, ;̂8 ∈ !̂ is a reconstructed label, and b is the parameters of the
auxiliary decoder.

3.1.4 Training objective. The objective function of our model is the
following:

min
\

max
q,b

� (�,!)∼%data

[

� (�, !;q) − Lrec

(

�, !, �̂(q, b), !̂(q, b)
)]

+

�/∼N,!∼%data

[

1 − �
(

� (/, !;\), !;q
)]

(11)

where we denote the reconstruction loss by Lrec. The reconstruc-
tion loss measures the similarity between two sets of bounding
boxes and labels, and we employ mean squared error for bounding
boxes, and cross entropy for labels. We compute the reconstruction
loss by first sorting the bounding boxes in lexicographic order of
the ground-truth positions [4].

3.2 Constrained Layout Generation via Latent
Optimization (CLG-LO)

Let us consider when there are user-specified constraints, such as
an element A must be above an element B. From the perspective
of the generator, such constraints restricts the available output
space. We formulate the generation with user specification in a
constrained optimization problem. Given a pre-trained generator
�̂ and discriminator �̂ , and a set of constraints � , we define the
constrained minimization problem regarding latent codes / :

min
/

−�̂
(

�̂ (/, !), !
)

s.t. 2=
(

�̂ (/, !)
)

= 0, = = 1, . . . , |� |. (12)

The intuition is that we seek to find bounding boxes that looks
as realistic as possible to the discriminator and satisfies the user-
specified constraints. Once the optimal latent codes / ∗ is found,
we can obtain bounding boxes �∗ that satisfy the constraints as
follows:

�∗ = �̂ (/ ∗, !). (13)
We use the augmented Lagrangian method [22], which is one of

the widely used algorithms for solving nonlinear optimization prob-
lems. In this method, the constrained problem is transformed into an
unconstrained problem that optimizes the augmented Lagrangian
function, which combines the Lagrangian and penalty functions.
Let us rewrite 5 (/) = −�̂

(

�̂ (/, !), !
)

and ℎ= (/) = 2=
(

�̂ (/, !)
)

in Eq. (12) for brevity, then we define the following augmented
Lagrangian function !� ,

!� (/ ; _, `) = 5 (/) +

|� |
∑

==1

_=ℎ= (/) +
`

2

|� |
∑

==1

ℎ= (/)
2, (14)

where _ are the Lagrange multipliers and ` > 0 is a penalty param-
eter to weight the quadratic functions.

In this method, the Lagrange multipliers are updated according
to the extent of constraint violation, and the penalty parameter is
gradually increased to make the impact of the constraints larger.
Let : be the current iteration, the update equations are expressed
as:

_:+1= = _:= + `:ℎ= (/:) (15)
`:+1 = U`: , (16)

where U is a predefined hyperparameter.
Algorithm 1 summarizes the procedure of our method. We repeat

the main loop until the amount of constraint violation is sufficiently
small or the iteration count reaches the maximum number of iter-
ations :max. We set U = 3, `0 = 1, _0 = 0, and :max = 5 in the
experiments. For the inner optimizer, we use either Adam [15] with
a learning rate of 0.01 or CMA-ES [9] with a initial sigma value of
0.25, and both run for 200 iterations. We compare in Sec 4.4 which
optimizer yields a better solution.

In practice, optimizing the output value of the discriminator
directly may yield an adversarial example, i.e., the discriminator
considers it as the real, but perceptually degraded. To avoid this,
we clamp the output value of the discriminator based on a certain
threshold. Specifically, we use 5 (/0) as the threshold, and 5 ′(/) =

max
(

5 (/) − 5 (/0), 0
)

instead of 5 (/) in Eq. (14).

ALGORITHM 1: Constrained layout generation via latent code
optimization

Input: pre-trained generator �̂ , pre-trained discriminator �̂ ,
labels !, constraints� , initial Lagrange multipliers _0,
initial penalty parameter `0

Output: bounding boxes �∗

/0 ← / ∼ N(0, I)

: ← 0

repeat
// Inner optimization (Eq. (14))
/ ∗ ← argmin/ !� (/ ;_

: , `: , �̂, �̂, !,�) starting at /:

Update the Lagrange multipliers by Eq. (15) to obtain _:+1

Update the penalty parameter by Eq. (16) to obtain `:+1
/: ← / ∗

: ← : + 1

until stopping criteria is fulfilled ;

�∗ ← �̂ (/ ∗, !)

return �∗

Table 1: Statistics of the datasets used in our experiments
and the splits using for evaluation.

Dataset # label
types

Max.
elements # train. # val. # test.

Rico [7, 20] 13 9 17,515 1,030 2,061
PubLayNet [38] 5 9 160,549 8,450 4,226
Magazine [37] 5 33 3,331 196 392

4 EXPERIMENTS
We evaluate the proposed method on both unconstrained and con-
strained layout generation tasks. We first describe the datasets and
evaluation metrics, and then explain the experimental setup for
each task.

4.1 Dataset
We evaluate layout generation on different types of graphic designs.
We use three publicly available datasets: Rico [7, 20] provides UI
designs collected from mobile apps, PubLayNet [38] compiles a
dataset of document images, and Magazine [37] collects magazine
pages. Following the previous studies [16, 17], we exclude elements
whose labels are not in the 13 most frequent labels in the Rico
dataset, and exclude layouts with more than 10 elements in both
the Rico and PubLayNet datasets. For the PubLayNet dataset, we use
95% of the official training split for training, the rest for validation,
and the official validation split for testing. For Rico and Magazine,
since there is no official data split, we use 85% of the dataset for
training, 5% for validation, and 10% for testing. We summarize the
statistics of the datasets in Table 1.

4.2 Evaluation Metrics
We use four metrics to measure the quality of the generated layouts:
Fréchet Inception Distance (FID) [11], Maximum Intersection over
Union (IoU), Alignment, and Overlap.

Table 2: Comparison of FID scores computed using feature
extractors trained with various objectives. In particular we
compare feature extractors trained with classification loss
(Class), reconstruction loss (Recon), and a combination of
both (Class+Recon). We compute the FID score between real
layouts and variants that have added noise, have been verti-
cally flipped, and nearest neighbors from the validation set.

Layout variants Class Recon Class+
Recon

Real - - -

Added
noise 186.64 37.99 127.57

Vertically
flipped 3.37 97.91 100.34

Nearest
neighbour 0.29 12.52 11.80

4.2.1 FID. To compute FID, we need to define the representative
features of layouts. We follow the approach of Lee et al. [16], and
train a neural network to classify between real layouts and noise
added layouts, and use the intermediate features of the network.
One difference from [16] is that we incorporate the auxiliary de-
coder in Sec 3.1.3 learning such that the trained network is aware
of both alignment and positions. In Table 2, we show a comparison
of FIDs across networks learned with different objectives; Class
is real/fake classification only, Recon is auxiliary reconstruction
only, and Class+Recon is learned with both objectives. The combina-
tion of both objectives improves the sensitivity to different layout
arrangements.

4.2.2 Maximum IoU. Maximum IoU is defined between two collec-
tions of generated layouts and references. We first define IoU based
similarity between two layouts � = {bi}

#
8=1 and �′ = {b′

i
}#8=1. We

consider the optimal matching between � and �′, then compute
the average IoU of bounding boxes. Let c ∈ S# be a one-by-one
matching, and S# be a set of possible permutations for size # .
Note that we only consider matches between two bounding boxes
with the same label, i.e., ;8 = ;c (8) (1 ≤ 8 ≤ #). The similarity with
respect to the optimal matching is computed as

6IoU (�, �
′, !) = max

c ∈S#

1

#

#
∑

8=1

IoU(b8 , b
′
c (8)
), (17)

where IoU(·, ·) computes IoU between bounding boxes. To evalu-
ate the similarity between generated layouts B = {�<}

"
<=1

and
references B′ = {�′<}"<=1

, we compute the average similarity on

the optimal matching:

MaxIoU(B,B′,L) = max
c ∈S"

1

"

"
∑

<=1

6IoU (�<, �′
c (<)

, !<), (18)

where we only consider matches between two layouts with an
identical label set, i.e., !< = !c (<) (1 ≤ < ≤ "). We use the
solver [6] provided by SciPy [33] to solve the assignment problems.

4.2.3 Alignment and overlap. We use the Alignment and Overlap
metrics used in the previous work [18]. We modify the original
metrics by normalizing with the number of elements # .

4.3 Unconstrained Layout Generation
4.3.1 Setup. We use LayoutGAN [17] and NDN [16] as baselines.
Although LayoutGAN is intended for the unconditional setting,
we adapt the model to be conditioned on a label set input. We
refer to the model using the wireframe rendering discriminator
as LayoutGAN-W and the one using the relation-based discrim-
inator as LayoutGAN-R. NDN first generates the position and
size relations between elements, then generates bounding boxes
based on the relations, and finally modifies the misalignment of
the boxes. We denote it as NDN-none to match the designation in
their paper, as our setting does not specify the relations. We reim-
plement all the baselines as since the official codes for the baselines
are not publicly available1. We implement our LayoutGAN++ with
PyTorch [26]. We train the model using the Adam optimizer with
200,000 iterations with a batch size of 64 and a learning rate of 1e-5,
taking six hours with a GPU of NVIDIA GeForce RTX 2080Ti. Our
Transformer modules consist of 8 blocks, and in each block, we
set the input/output dimension to 256, the dimension of the hidden
layer to 128, and the number of multi-head attentions to 4.

4.3.2 Results. We summarize the quantitative comparison in Ta-
ble 3 and the qualitative comparison in Fig. 3. Since all the com-
parison methods are stochastic, we report the mean and standard
deviation of five evaluations with the same trained model. Regard-
ing LayoutGAN [17], we find that LayoutGAN-W is unstable to
train, and failed to reproduce the results as good as in their paper
despite our efforts, which is similarly reported in the recent stud-
ies [1, 8]. Our results show that LayoutGAN-R is much stable to
train, and outperforms LayoutGAN-W. Our LayoutGAN++ achieves
comparable to or better results than the current state-of-the-art
method NDN-none [16], in particular, results on the Rico dataset
are similar, while results on the PubLayNet dataset and Magazine
dataset are favourable to our approach.

4.4 Layout Generation with Beautification
Constraints

The goal of this setting is to generate a well-aligned layout with
no overlapping, which can serve as a post-processing to beautify
the result of the unconstrained layout generation. We conduct
the experiment with the PubLayNet dataset, in which most of the
layouts are aligned and have little overlap.

1The authors of LayoutGAN provide only the code for point layout experiment in
https://github.com/JiananLi2016/LayoutGAN-Tensorflow, not for bounding boxes.

https://github.com/JiananLi2016/LayoutGAN-Tensorflow

Table 3:Quantitative comparison of unconstrained layout generation.The values of Alignment and Overlap are multiplied by
100× for visibility. Comparisons are provided on three different datasets (Rico, PubLaynet, and Magazine). For reference, the
FID andMax. IoU computed between the validation and test data, and the Alignment and Overlap computed with the test data
are shown as real data.

Dataset Rico PubLayNet Magazine

Model FID ↓ Max. IoU ↑ Alignment ↓ Overlap ↓ FID ↓ Max. IoU ↑ Alignment ↓ Overlap ↓ FID ↓ Max. IoU ↑ Alignment ↓ Overlap ↓

LayoutGAN-W [17] 162.75±0.28 0.30±0.00 0.71±0.00 174.11±0.22 195.38±0.46 0.21±0.00 1.21±0.01 138.77±0.21 159.20±0.87 0.12±0.00 0.74±0.02 188.77±0.93
LayoutGAN-R [17] 52.01±0.62 0.24±0.00 1.13±0.04 69.37±0.66 100.24±0.61 0.24±0.00 0.82±0.01 45.64±0.32 100.66±0.35 0.16±0.00 1.90±0.02 111.85±1.44
NDN-none [16] 13.76±0.28 0.35±0.00 0.56±0.03 54.75±0.29 35.67±0.35 0.31±0.00 0.35±0.01 16.50±0.29 23.27±0.90 0.22±0.00 1.05±0.03 30.31±0.77
LayoutGAN++ 14.43±0.13 0.36±0.00 0.60±0.12 59.85±0.59 20.48±0.29 0.36±0.00 0.19±0.00 22.80±0.32 13.35±0.41 0.26±0.00 0.80±0.02 32.40±0.89

Real data 4.47 0.65 0.26 50.58 9.54 0.53 0.04 0.22 12.13 0.35 0.43 25.64

Label set LayoutGAN-
W [17]

LayoutGAN-
R [17] NDN-none [16] LayoutGAN++ Real data Label set LayoutGAN-

W [17]
LayoutGAN-

R [17] NDN-none [16] LayoutGAN++ Real data

Ri
co

Pu
bL

ay
N
et

M
ag

az
in
e

Figure 3: Qualitative comparison of unconstrained layout generation. Label set indicates the total number of labels and their
type for each conditional generation result. On the right we show the real data from which the label set was taken.

4.4.1 Constraints. Let 6align be the function that computes the
Alignment metric, we express the alignment constraint as

2align (�) = max
(

6align (�) − g, 0
)

, (19)
where g is a threshold parameter. We set g = 0.004 in our experi-
ment. We use the Overlap metric as the non-overlapping constraint
2ovrlp.

4.4.2 Setup. We use a pre-trained LayoutGAN++model within our
proposed CLG-LO framework to perform the constrained task. We
follow the same settings as in Section 4.3 for training LayoutGAN++.
We compare two different inner optimizers, Adam [15] and CMA-
ES [9]. The mean runtime for CLG-LO was 13.6 seconds with Adam
(SD: 11.2) and 1.45 seconds with CMA-ES (SD: 1.75).

Since there is no directly comparable methods in the literature
for this setting, we design a baseline called CAL that uses con-
straints as additional losses, referring to the similar work [18]. To
instantiate CAL, we train LayoutGAN++ with both the alignment
constraint 2align and the non-overlapping constraint 2ovrlp added
to the generator objective, which encourages a generated layout
that satisfies the constraints, but does not explicitly enforce them.

4.4.3 Results. We summarize the quantitative comparison in Ta-
ble 4. The base model is LayoutGAN++ without beautification. We

Table 4:Quantitative results with beautification constraints.
Base model refers to the unconstrained LayoutGAN++. The
values of Alignment and Overlap are multiplied by 100× for
visibility.

Model FID ↓ Max. IoU ↑ Alignment ↓ Overlap ↓

Base model 20.48±0.29 0.36±0.00 0.19±0.00 22.80±0.32
CAL 13.31±0.17 0.38±0.00 0.16±0.00 14.27±0.19
CLG-LO w/ Adam 21.79±0.38 0.36±0.00 0.16±0.00 1.18±0.04
CLG-LO w/ CMA-ES 22.97±0.38 0.36±0.00 0.14±0.00 0.02±0.00

can see that CAL performs better in terms of Alignment andOverlap
than the baseline, thanks to the added losses. FID andMaximum IoU
are also improved, which may be due to the inductive bias expressed
as the added losses, making GAN easier to train. Our CLG-LO fur-
ther improves Alignment and Overlap significantly with almost no
degradation in terms of FID and Maximum IoU. As for the choice of
inner optimizer, CMA-ES seems to perform better than Adam. We
suspect that due to the augmented Lagrangian function (Eq. (14))
having many local solutions, and thus a population-based global
gradient-free optimization method, e.g., CMA-ES, is more suitable
than a gradient-based method, e.g., Adam.

Initial

Optimized

Figure 4: Qualitative results with beautification constraints
forCLG-LOw/CMA-ES. Initial unconditioned generation re-
sults are shown in the top row and the optimized results are
shown in the bottom row.

We show the optimization results by CLG-LO using CMA-ES as
the inner optimizer in Fig. 4. Our framework successfully found
aligned and non-overlapping layouts. We have set the initial sigma
parameter of CMA-ES smaller to explore around the initial latent
code, which leads to the optimized layout not changing significantly
from the initial layout.

4.5 Layout Generation with Relational
Constraints

In this setting, we consider a scenario where the user specifies the
location and size relationships of elements in the layout. We con-
sider three size relations, smaller, larger and equal, and five location
relations, above, bottom, left, right, and overlap. We also define the
relation to the canvas, e.g., positioning at the top of the canvas. We
determine the relations from the ground-truth layout and use its
subset as constraines. We change percentages of the relations used
as constraints and report the rate of violated constraints.

4.5.1 Constraints. The size constraint 2size is defined as the sum
of cost functions of all size relations. For example, suppose the user
specifies that the 9-th element has to be larger than the 8-th element,
then the cost function of larger relation is defined by:

6lg (b8 , b9) = max
(

(1 + W)0(b8) − 0(b9), 0
)

, (20)
where 0(·) is a function that calculates the area of a given bounding
box, and W is a tolerance parameter shared across the size relations.
We set A = 0.1 in our experiment.

We also define the location constraint 2loc in the same way. For
example, suppose the user specifies that the 9-th element has to be
above the 8-th element, then the cost function of above relation is
defined by:

6ab (b8 , b9) = max
(

~b (b9) − ~t (b8), 0
)

, (21)
where ~t (·) and ~b (·) are functions that return the top and bottom
coordinates of a given bounding box, respectively.

4.5.2 Setup. We compare our CLG-LO against NDN [16]. In CLG-
LO, we use CMA-ES for the inner optimizer, as it worked well in
the experiments with beautification constraints. The rest of the
settings follow the experiment with beautification constraints, but
for a fair comparison, we did not use the beautification constraints

themselves. The mean runtime for CLG-LO was 1.96 seconds (SD:
3.48).

4.5.3 Results. We show the qualitative results in Fig. 5 and the
quantitative comparison in Table 5. We report the results for a
setting that uses 10% of all relations in Table 5, which is what
we believe would be representative of a realistic usage scenario.
A typical example that uses roughly 10% relations is the upper
left one in Fig. 5. Our CLG-LO performed comparable to or better
than NDN, and in particular showed significant improvement in
the constraint violation metric. This is as to be expected because
NDN does not guarantee the inferred result satisfies the constraints,
whereas our method tries to find a solution that satisfies as many
of the constraints as possible through iterative optimization.

We also show in Fig. 6 the experimental results of varying the
percentage of relations used. We can find that NDN performs better
as increasing the number of relations used, which is reasonable
since its layout generation module is trained with the complete
relational graph of the ground-truth layout. On the other hand,
our CLG-LO performs unfavorably as increasing the number of
relations used, because it becomes harder to find a solution that
satisfies the constraints. A practical remedy when no solution is
found could be to store a layout for each iteration of the main
loop in Algorithm 1, and let the user choose one based on the
trade-off between constraint satisfaction and layout quality. We
note, however, that our method performs best in realistic scenarios
where the number of user-specified relations is few.

5 CONCLUSIONS AND DISCUSSION
In this paper, we proposed a novel framework called Constrained
Layout Generation via Latent Optimization (CLG-LO), which per-
forms constrained layout generation by optimizing the latent codes
of pre-trained GAN. While existing works treat constraints as ei-
ther additional objectives or conditioning, requiring re-training
when unexpected constraints are involved, our framework can
flexibly incorporate a variety of constraints using a single uncon-
strained GAN. While our approach is applicable to most generative
layout design models, we also present a new layout generation
model called LayoutGAN++ that is able to outperform existing
approaches in unconditioned generation. Experimental results on
both unconstrained and constrained generation tasks using three
public datasets support the effectiveness of the proposed methods.

While our approach is able to significantly outperform existing
approaches in many cases, given the non-convexity and complexity
of the optimization problem as the objective and constraint func-
tions in Eq. (12) involve a complex nonlinear neural network, we
have no guarantees on the convergence of the approach. When
the number of constraints becomes large (Figure 6), the optimizer
can have issues finding a good solution, and underperform existing
approaches. However, in general, most users will not specify very
large number of constraints, and in those situations, our approach
significantly outperforms existing approaches. We believe that this
effect can be mitigated by improving the optimization approach
itself, using piece-wise convex approximations, or improving the
initialization of the optimization variables. It may also be practical
to design an interaction that asks the user to remove or change
difficult constraints.

Rico PubLayNet Magazine
Constraints Initial Optimized Constraints Initial Optimized Constraints Initial Optimized

Figure 5: Qualitative results with relational constraints for the three datasets for our prposed CLG-LO w/ CMA-ES. In each
column, for each result we show the constraints on the left, the initial unconstrained generation result in the middle, and the
optimized result on the right.

Table 5: Quantitative results with relational constraints when 10% of all the relational constraints are used. The values of
Alignment are multiplied by 100× for visibility.

Dataset Rico PubLayNet Magazine

Model Max. IoU ↑ Alignment ↓ Const. violation (%) ↓ Max. IoU ↑ Alignment ↓ Const. violation (%) ↓ Max. IoU ↑ Alignment ↓ Const. violation (%) ↓

NDN [16] 0.36±0.00 0.56±0.03 12.75±0.27 0.31±0.00 0.36±0.00 17.30±0.54 0.23±0.00 1.04±0.05 14.85±0.44
CLG-LO 0.36±0.00 0.77±0.09 0.84±0.13 0.36±0.00 0.23±0.01 4.61±0.17 0.26±0.00 0.79±0.03 1.77±0.39

Figure 6:Quantitative resultswith relational constraints.The different colors correspond to each of the three datasets.The solid
lines denotes CLG-LO, and the dashed lines denotes NDN. Higher is better for Max. IoU, and lower is better for Alignment and
Violation. Our proposed CLG-LO approach often outperforms NDN when only a small part of relations is specified.

Our optimization-based approach allows us to flexibly change
not only the constraint function, but also the objective function.
For example, if we wish to limit the amount of change, we can add
the distance between the boxes before and after the optimization
as a penalty to the objective function. Our approach can also be
applied to any model that can generate diverse plausible layouts
through manipulating latent variables. Note that when used with
VAE-based models [1, 12, 16] that do not have an explicit function to
measure the quality of the generated layout, it becomes a constraint
satisfaction problem. Our approach still works in such cases, but if
the quality of the outcome is problematic, it may be necessary to
train an additional measurement network like a discriminator.

There are many open directions for improvement such as in-
corporating models that approximate human perception as con-
straints [3, 36] in order to generate more aesthetically pleasing
results. Exploring latent codes considering the diversity of layouts
is another exciting direction [28], allowing for efficient design explo-
ration with a variety of alternatives. Also, it is worth investigating
whether or not our proposed CLG-LO approach can be applied
generation problems other than that of layout designs.

ACKNOWLEDGMENTS
This work is partially supported by Waseda University Leading
Graduate Program for Embodiment Informatics.

REFERENCES
[1] Diego Martin Arroyo, Janis Postels, and Federico Tombari. 2021. Variational

Transformer Networks for Layout Generation. arXiv:arXiv:2104.02416
[2] David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff, Bolei Zhou, Jun-Yan

Zhu, and Antonio Torralba. 2019. Semantic PhotoManipulation with a Generative
Image Prior. ACM Trans. Graph. 38, 4, Article 59 (2019), 11 pages.

[3] Zoya Bylinskii, Nam Wook Kim, Peter O’Donovan, Sami Alsheikh, Spandan
Madan, Hanspeter Pfister, Fredo Durand, Bryan Russell, and Aaron Hertzmann.
2017. Learning Visual Importance for Graphic Designs and Data Visualizations.
ACM Symp. User Inter. Soft. Tech. (2017).

[4] Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. 2020.
DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation.
In Adv. Neural Inform. Process. Syst.

[5] Chia-Hsing Chiu, Yuki Koyama, Yu-Chi Lai, Takeo Igarashi, and Yonghao Yue.
2020. Human-in-the-Loop Differential Subspace Search in High-Dimensional
Latent Space. ACM Trans. Graph. (2020).

[6] David F. Crouse. 2016. On Implementing 2D Rectangular Assignment Algorithms.
IEEE Trans. Aerospace Electron. Systems (2016).

[7] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In ACM Symp. User Inter. Soft.
Tech.

[8] Kamal Gupta, Vijay Mahadevan, Alessandro Achille, Justin Lazarow, Larry S.
Davis, and Abhinav Shrivastava. 2021. Multimodal Attention for Layout Synthesis
in Diverse Domains. https://openreview.net/forum?id=L2LEB4vd9Qw

[9] Nikolaus Hansen. 2016. The CMA Evolution Strategy: A Tutorial.
arXiv:arXiv:1604.00772

[10] Paul Henderson, Kartic Subr, and Vittorio Ferrari. 2017. Automatic Generation
of Constrained Furniture Layouts. arXiv preprint arXiv:1711.10939 (2017).

[11] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. 2017. GANs Trained by a Two Time-Scale Update Rule Converge
to a Local Nash Equilibrium. In Adv. Neural Inform. Process. Syst.

[12] Akash Abdu Jyothi, Thibaut Durand, Jiawei He, Leonid Sigal, and Greg Mori.
2019. LayoutVAE: Stochastic Scene Layout Generation From a Label Set. In Int.
Conf. Comput. Vis.

[13] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive
Growing of GANs for Improved Quality, Stability, and Variation. In Int. Conf.
Learn. Represent.

[14] Tero Karras, Samuli Laine, and Timo Aila. 2019. A Style-Based Generator Archi-
tecture for Generative Adversarial Networks. In IEEE Conf. Comput. Vis. Pattern
Recog.

[15] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In Int. Conf. Learn. Represent.

[16] Hsin-Ying Lee, Lu Jiang, Irfan Essa, Phuong B. Le, Haifeng Gong, Ming-Hsuan
Yang, and Weilong Yang. 2020. Neural Design Network: Graphic Layout Genera-
tion with Constraints. In Eur. Conf. Comput. Vis.

[17] Jianan Li, Jimei Yang, Aaron Hertzmann, Jianming Zhang, and Tingfa Xu. 2019.
LayoutGAN: Synthesizing Graphic Layouts with Vector-Wireframe Adversarial
Networks. IEEE Trans. Pattern Anal. Mach. Intell. (2019).

[18] Jianan Li, Jimei Yang, Jianming Zhang, Chang Liu, Christina Wang, and Tingfa
Xu. 2020. Attribute-conditioned Layout GAN for Automatic Graphic Design.
IEEE Trans. Vis. Comput. Graph. (2020).

[19] Bingchen Liu, Yizhe Zhu, Kunpeng Song, and Ahmed Elgammal. 2021. Towards
Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis.
In Int. Conf. Learn. Represent.

[20] Thomas F. Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha
Kumar. 2018. Learning Design Semantics for Mobile Apps. In ACM Symp. User
Inter. Soft. Tech.

[21] Sachit Menon, Alex Damian, McCourt Hu, Nikhil Ravi, and Cynthia Rudin. 2020.
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Gen-
erative Models. In IEEE Conf. Comput. Vis. Pattern Recog.

[22] Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization. Springer,
Chapter 17.

[23] Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. 2015. DesignScape:
Design with interactive layout suggestions. In CHI.

[24] Peter O’Donovan, Aseem Agarwala, and Aaron Hertzmann. 2014. Learning
layouts for single-pagegraphic designs. IEEE Trans. Vis. Comput. Graph. (2014).

[25] Xingang Pan, Xiaohang Zhan, Bo Dai, Dahua Lin, Chen Change Loy, and Ping
Luo. 2020. Exploiting Deep Generative Prior for Versatile Image Restoration and
Manipulation. In Eur. Conf. Comput. Vis., Andrea Vedaldi, Horst Bischof, Thomas
Brox, and Jan-Michael Frahm (Eds.). 262–277.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Adv. Neural Inform. Process. Syst.

[27] Akshay Gadi Patil, Omri Ben-Eliezer, Or Perel, and Hadar Averbuch-Elor. 2020.
READ: Recursive autoencoders for document layout generation. In IEEE Conf.
Comput. Vis. Pattern Recog. Worksh.

[28] Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. 2016. Quality Diversity: A
New Frontier for Evolutionary Computation. Frontiers in Robotics and AI (2016).

[29] Daniel Ritchie, Kai Wang, and Yu-an Lin. 2019. Fast and flexible indoor scene
synthesis via deep convolutional generative models. In IEEE Conf. Comput. Vis.
Pattern Recog.

[30] Jacob Schrum, Jake Gutierrez, Vanessa Volz, Jialin Liu, Simon Lucas, and Sebastian
Risi. 2020. Interactive Evolution and Exploration within Latent Level-Design
Space of Generative Adversarial Networks. In Proceedings of the 2020 Genetic and
Evolutionary Computation Conference (GECCO ’20). 148–156.

[31] Nobuyuki Umetani. 2017. Exploring Generative 3D Shapes Using Autoencoder
Networks. In SIGGRAPH Asia 2017 Technical Briefs (SA ’17). Article 24, 4 pages.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, undefinedukasz Kaiser, and Illia Polosukhin. 2017. Attention is
All You Need. In Adv. Neural Inform. Process. Syst.

[33] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, et al. 2020. SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nature Methods (2020).

[34] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. 2018. Non-local
Neural Networks. In IEEE Conf. Comput. Vis. Pattern Recog.

[35] Zaiwei Zhang, Zhenpei Yang, Chongyang Ma, Linjie Luo, Alexander Huth, Eti-
enne Vouga, and Qixing Huang. 2020. Deep generative modeling for scene
synthesis via hybrid representations. ACM Trans. Graph. 39, 2 (2020), 1–21.

[36] Nanxuan Zhao, Ying Cao, and Rynson W.H. Lau. 2018. What Characterizes
Personalities of Graphic Designs? ACM Trans. Graph. (2018).

[37] Xinru Zheng, Xiaotian Qiao, Ying Cao, and Rynson W.H. Lau. 2019. Content-
aware Generative Modeling of Graphic Design Layouts. ACM Trans. Graph.
(2019).

[38] Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. 2019. PubLayNet: Largest
Dataset Ever for Document Layout Analysis. In IEEE Conf. Doc. Anal. Recog.

[39] Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. 2020. In-Domain GAN
Inversion for Real Image Editing. In Eur. Conf. Comput. Vis., Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). 592–608.

[40] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A. Efros. 2016.
Generative Visual Manipulation on the Natural Image Manifold. In Eur. Conf.
Comput. Vis.

https://arxiv.org/abs/arXiv:2104.02416
https://openreview.net/forum?id=L2LEB4vd9Qw
https://arxiv.org/abs/arXiv:1604.00772

	Abstract
	1 Introduction
	2 Related Work
	2.1 Layout Generation
	2.2 Latent Space Exploitation

	3 Approach
	3.1 LayoutGAN++
	3.2 Constrained Layout Generation via Latent Optimization (CLG-LO)

	4 Experiments
	4.1 Dataset
	4.2 Evaluation Metrics
	4.3 Unconstrained Layout Generation
	4.4 Layout Generation with Beautification Constraints
	4.5 Layout Generation with Relational Constraints

	5 Conclusions and Discussion
	Acknowledgments
	References

